Applications of Derivative

Objectives

- Know what the Maximum and minimum are.
- Know what the Increasing and Decreasing are.
- Know what the Concavity \& Points of inflection are.
- Know what the Second Derivative Test is.
- Know what the Mean value theorem is.

Maximum and minimum points \& Increasing and Decreasing Functions

Derivatives can be used to sketch functions:

First Derivative:

-First derivative indicates slope -if $y^{\prime}>0$, function slopes increase -if y ’<0, function slopes decrease -if y ' $=0$, function slope is horizontal -slope may change over time
shape/concavity must be determined Second Derivative:
-Second derivative indicates concavity
-if y">0, (concave upward); (minimum point).
-if y"<0, (concave downward);
(maximum point).
-if y " $=0$, (an inflection point occurs)

Sample Graphs

$y "=2$, graph is concave upward

$$
\begin{aligned}
& y=x^{2}-10 x+15 \\
& y^{\prime}=2 x-10 \quad ; \quad y^{\prime}=0 \Rightarrow x=5 \\
& y^{\prime \prime}=2
\end{aligned}
$$

x

Sample Graphs

y " $=-2$, graph is concave downward

$$
\begin{aligned}
& y=-x^{2}+10 x+15 \\
& y^{\prime}=-2 x+10 \quad ; \quad y^{\prime}=0 \Rightarrow x=5 \\
& y^{\prime \prime}=-2
\end{aligned}
$$

Critical Point

An interior point of the domain of a function f where f ' is zero or undefined.

Maxima/minima can aid in drawing graphs Maximum Point:
If 1) $f(a)^{\prime}=0$, and
2) $f(a)$ " <0,

- graph has a maximum point (peak) at $x=a$ Minimum Point:
If 1) $f(a)^{\prime}=0$, and

2) $f(a) ">0$,

- graph has a minimum point (valley) at $x=a$

Inflection Points:

If

1) $f(a) "=0$, and
2) the graph is not a straight line -then an inflection point occurs -(where the graph switches between concave upward and concave downward)

x

Graphing Steps:

i) Evaluate $\mathbf{y}(\mathrm{x})$ at intersect with y axis; ($\mathrm{x}=0$).
ii) Determine where $\mathrm{y}=0$ at intersect with x-axis.
iii) Calculate slope: y ' - and determine where it is positive and negative.
iv) Identify possible maximum and minimum
co-ordinates where y' $=0$. (Don't just find the x values).
v) Calculate the second derivative - y" and use it to determine max/min in iv.
vi) Using the second derivative, determine the curvature (concave upward or concave downward) at other points.
vii) Check for inflection points where y" $=0$.

Graphing Example 1

$y=(x-5)^{2}-3$
i) $y(0)=22$,
ii) $y=0$ when

$$
\begin{aligned}
&(x-5)^{2}=3 \\
&(x-5)= \pm 3^{1 / 2} \\
& x \quad= \pm 3^{1 / 2}+5 \\
& x=6.7,3.3 \text { (x-intercepts) }
\end{aligned}
$$

iii) $y^{\prime}=2(x-5)$
$y \gg 0$ when $x>5$
$y>0$ when $x<5$

$y=(x-5)^{2}-3$

iv) y ' $=0$ when $x=5$
$y(5)=(5-5)^{2}-3=-3$
$(5,-3)$ is a potential max/min.
v) y " $=2,(5,-3)$ is a minimum.
vi) Function is always positive, it is always concave downward.
vii) y" never equals zero.

$y=(x-5)(x-5)-3$

Graphing Example 2

$y=(x+1)(x-3)=x^{2}-2 x-3$
i) $y(0)=-3$,
ii) $y=0$ when

$$
(x+1)(x-3)=0
$$

$$
x=3,-1 \text { (x-intercepts) }
$$

iii) $y^{\prime}=2 x-2$

$$
\begin{aligned}
& y^{\prime}>0 \text { when } x>1 \\
& y^{\prime}<0 \text { when } x<1
\end{aligned}
$$

$y=(x+1)(x-3)=x^{2}-2 x-3$
iv) $y^{\prime}=0$ when $x=1$ $f(1)=1^{2}-2(1)-3=-4$ $(1,-4)$ is a potential max/min.
v) $y "=2, x=1$ is a minimum.
vi) Function is always positive, it is always concave upward.
vii) y" never equals zero.

$$
y=(x+1)(x-3)
$$

Second derivative test

If there is a critical value at $x=\mathrm{c}$

$$
f^{\prime \prime}(c)<0 \quad \text { A local max at } x=\mathrm{c} \text {, Concave down }
$$

-

$$
f^{\prime \prime}(c)>0 \quad \text { A local min at } x=\mathrm{c} \text {, Concave up }
$$

$$
+
$$

$f^{\prime \prime}(c)=0 \quad$ inconclusive

Mean Value Theorem

Let $f(x)$ be a function defined on $[a, b]$ such that
(i) it is continuous on [a, b].
(ii) it is differentiable on (a, b).

Then, there exists a real number
$c \in(a, b)$
such that $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Geometrical Meaning

From the triangle AFB,
$\tan \phi=\frac{\mathrm{BF}}{\mathrm{AF}} \Rightarrow \tan \phi=\frac{f(\mathrm{~b})-f(\mathrm{a})}{\mathrm{b}-\mathrm{a}}$

By Mean Value theorem,

$$
f^{\prime}(\mathrm{c})=\frac{f(\mathrm{~b})-f(\mathrm{a})}{\mathrm{b}-\mathrm{a}} \Rightarrow \tan \phi=f^{\prime}(\mathrm{c})
$$

Example- 1

Verify Mean Value theorem for the function $f(x)=x^{2}-3 x+2$ on [-1, 2].

Solution :

(1) The function $f(x)$ being a polynomial function is continuous in $[-1,2]$.
(2) $f^{\prime}(x)=2 x-3$ exists in $(-1,2)$
$\therefore f(x)$ is differentiable in $(-1,2)$
So, there exists at least one $c \in(-1,2)$ such that

$$
\begin{gathered}
f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \\
\Rightarrow 2 c-3=\frac{0-6}{2+1} \\
\Rightarrow 2 c-3=-2 \Rightarrow c=\frac{1}{2} \in(-1,2)
\end{gathered}
$$

Example- 2

Using mean value theorem, find the point on the curve

$$
y=x^{3}-3 x
$$

where tangent is parallel to the chord joining ($1,-2$) and $(2,1)$.

Solution :

(1) The function being a polynomial function is continuous on [1, 2].
(2) $y^{\prime}=3 x^{2}-3$ exists in $(1,2)$
\therefore Function is differentiable in $(1,2)$.

So, $\exists x \in(1,2)$ such that tangent is parallel to chord joining $(1,-2)$ and $(2,1)$

$$
\begin{aligned}
& \therefore f^{\prime}(x)=\frac{f(2)-f(1)}{2-1} \Rightarrow 3\left(x^{2}-1\right)=\frac{2-(-2)}{1} \\
& \Rightarrow x^{2}-1=\frac{4}{3} \Rightarrow x^{2}=\frac{7}{3} \Rightarrow x= \pm \sqrt{\frac{7}{3}} \\
& \therefore y=\left(\frac{7}{3}\right)^{\frac{3}{2}}-3 x\left(\pm \sqrt{\frac{7}{3}}\right) \\
& \quad \therefore y=\mp \frac{2}{3} \sqrt{\frac{7}{3}}
\end{aligned}
$$

\therefore The points are $\left(\sqrt{\frac{7}{3}},-\frac{2}{3} \sqrt{\frac{7}{3}}\right),\left(-\sqrt{\frac{7}{3}}, \frac{2}{3} \sqrt{\frac{7}{3}}\right)$.

